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Summary

This deliverable is dedicated to the work done within the WP5 - Synthetic Index and
Attribution Scheme: the BACIndex. WP5 is divided into 4 main tasks and this third re-
port refers to the third one: Task 5.3 - Incremental novelty detection, automatic dataset
cleanup and going from novelty scores to direct detections.

The focus of this third task of our WP was divided into two main objectives: on
one hand we have developed an interactive software able to incorporate user feedback
based on the Maximally Divergent Algorithm to detect anomalies and on the other hand
we have been working on the improvement and novelty detection methods based on
autoregressive models developed in Tasks 5.1 and 5.2 (see Deliverable 5.1 and 5.2)
by improving the cleanup pretreatment of the data and extending the methodology to
direct detection of anomalies.

Each section of this deliverable corresponds to one of these two objectives:

1. Implementation of the Maximally Divergent Intervals Method for Anomaly
Detection. Software Prototype. In this section, we present the software proto-
type developed to run an algorithm able to detect abnormal intervals within multi-
variate time series based on a Kullback-Leibler divergence criteria. This algorithm
was developed during Task 5.1 and extended during Task 5.2. The algorithm was
extended to be able to deal with spatio-temporal data. Although the software
can handle non-spatial time series and also spatio-temporal data; for non-spatial,
purely temporal time series, we have developed a graphical user interface (GUI).
This GUI facilitates the implementation with any kind of data and allows for inter-
active expert feedback and threshold adaptation. The software together with the
GUI are publicly available under https://cvjena.github.io/libmaxdiv/.

2. Advances in the Multivariate Autoregressive Models for Novelty Detection.
First Version of the BACIndex. In this section, we present the improvements
and extensions for our methodology to detect extreme events in biosphere data
based on autoregressive models developed during previous tasks. In terms of
dataset cleanup we have improved our pretreatment step in the methodology by
introducing a regionalization scheme and automatic selection of the autoregres-
sive models to be applied at each location and variable. Additionally, at the event
detection step of our methodology we have developed a spatio-temporal classi-
fication method of the novelty score (Mahalanobis distance in our method) that
allows direct detection of the spatial and temporal extent of anomalies. By using
the spatial and temporal regularity in neighboring locations, the method classi-
fies the novelty score into three classes, intense anomaly, possible anomaly, and
normal. Making the detection of the spatial and temporal extent of the anomalies
straightforward.



1 Implementation of the Maximally Divergent Intervals
Method for Anomaly Detection. Software Prototype.

While in the first task of this Work Package we developed the MDI algorithm, whose
early prototype was described in details in Deliverable 5.1. Since the beginning, this
method presented promising results but also suffered from some disadvantages. These
shortcomings were successfully addressed during Task 5.2 and presented in Deliver-
able 5.2.

In this deliverable we present two final implementations done to the model. Initially,
we have extended the MDI to be able to deal with spatio-temporal data. Additionally we
also present a graphical user interface (GUI) for non-spatial time series that facilitates
the experimentation with any kind of data. This interface allows for interactive experi-
ments, anomaly thresholds testing and comparison between different approaches.

The software with the MDI algorithm, together with the graphical user interface and
a user guide has been released and are publicly available.

The current status of the Maximally Divergent Intervals method for Anomaly Detec-
tion was selected to be presented within the Student Posters Competition organized
within the MTS/IEEE OCEANS-17 Conference last June 2017 in Aberdeen, UK, [1].

1.1 Improvements and Extensions to the MDI Algorithm. Spatial
Extension.

The extension of our MDI algorithm to spatio-temporal data is straightforward: Imag-
ine the data as a hypercube X, ., ., With 5 axes: time, x, y, z and attribute. Instead
of considering intervals of time only, we consider sub-blocks along the first four axes
and compare the distribution of the data within a given sub-block with the distribution
outside of the block using the KL divergence.

The approach of cumulative sums (for more detailed information please see De-
liverable 5.2) can be generalized as well. The extraction of the sum over a sub-block
from a fourth-order tensor of cumulative sums C, , , . follows the inclusion-exclusion
principle and requires 2* = 16 additions/subtractions:

Tl Y1

t1 21
Z Z Z Z Keaye = Z(i,j,k,z)e{o,1}4 ((_1)i+j+k+l ’ Ctiaxjvykvzz) (1)

t=to =0 y=yYo 2=20

In analogy to the Time-Delay Embedding implemented in Deliverable 5.2 for purely
temporal time series, one might want to apply Spatial-Neighbour Embedding by aug-
menting the feature vector of each sample with the feature vectors of contiguous spatial
locations. In combination with Time-Delay Embedding this usually leads to an explo-
sion of dimensionality and becomes intractable quickly for data with many attributes.



Fortunately, this embedding is only necessary if one wants to detect spatial anomalies,
but not if one is just interested in the spatial location of temporal anomalies.

Experiments on the Spatio-Temporal Anomaly Detection We have used Sea Level
Pressure data from the NCEP-NCAR database [6] for the evaluation of our algorithm in
the face of spatio-temporal data. It covers a larger area over the North Atlantic Sea, giv-
ing the Sea Level Pressure during 55 years from 1957 to 2011 at 476 spatial locations
between 25° N, 52.5° W and 65° N, 15° E with a spatial resolution of 2.5° and a daily
temporal resolution. Regarding the time dimension, we apply Time-Delay Embedding
with k£ = 3,7 = 1 and search for intervals of size between 3 and 10 days. Concerning
space, we do not apply any embedding here and set a minimum size of 7.5°x 7,5°, but
no maximum. We retrieve the top 20 detections with the unbiased Gaussian method
and compared to a list of 89 historic storms compiled from several sources. Comparing
our top 20 detections with the list of historic storms, we were able to match 7 of them.

A visual inspection of the results shows that our algorithm is not only capable of de-
tecting occurrences of anomalous low-pressure fields over time, but also their spatial
location. This can be seen in Figure 1, which shows the start, the middle and the end
of the top 5 detections.

It is not necessary to apply Spatial-Neighbour embedding in this scenario, since
we are not interested in spatial outliers, but only in the location of temporal outliers. If
we do apply Spatial-Neighbour Embedding, some high-pressure fields surrounded by
low-pressure fields are detected as well.

1.2 Software Prototype and Graphical User Interface

In order to make our algorithm available to a broad public, we have released the soft-
ware. The software allows the detection of abnormal intervals in multivariate time se-
ries based on a divergence criteria.

Together with the release of the software we have also developed a Graphical User
Interface (see Figure 2) and a user guide. Although the software support spatio-
temporal data, the graphical interface support only non-spatial data, purely time se-
ries, and provides the user an immediate visualization of the intervals detected by the
algorithm. The score of the detection is reflected by the intensity of the colour in the in-
teractive figure, which can be zoomed, panned and exported. The raw list of detections
may be exported as well. This ease of usage facilitates experimenting with different pa-
rameter combinations in order to achieve the best results for the respective application.

The software (liomaxdiv), together with the graphical user interface and a user guide
was released around the beginning of 2017. All the documentation regarding the library
and its installation can be found in https://cvjena.github.io/libmaxdiv/.
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Figure 1: Sea Level Pressure during the start, the middle and the end of the top 5
detections on the SLP dataset. The red frame spans the region detected by the algo-

rithm.
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Figure 2: Screenshot of the MDI GUI.

1.3 Conclusions

In this section we have presented the advances developed for the Maximally Divergent
Intervals algorithm together with the release of its software prototype. There have been
two main implementations in this method:

« The MDI algorithm has been extended to be able to deal with spatio-temporal
data. This extension has been done by considering sub-blocks along the 3 spatial
axis and the temporal one and comparing them with the distribution outside the
block.

 Additionally it has been developed a graphical user interface (GUI) for non-spatial
time series. This GUI will help the experimentation and ease the use of the
algorithm. Threshold testing and interactive experiments comparing the different
approaches is now available for the user.

» The software with the MDI algorithm, together with a graphical user interface and
a user guide has been released and are publicly available.



2 Advances in the Multivariate Autoregressive Models
for Novelty Detection. First Version of the BACIndex.

The first version of our methodology on Multivariate Novelty Detection with Autoregres-
sive Models was described in Deliverable 5.2. It yielded promising results, but still
suffered from some major shortcomings:

» A similar order of autoregressive model (ARMA(p, ¢q)) was assumed for all the
variables involved. In Deliverable 5.2 it was assumed an ARMA(3,1), with p = 3
and ¢ = 1 in the model:

P q
X =¢e+ Z YiXi—i + Z Oii—i (2)
i=1 i=1

where ¢4, ..., ¢, and 6y, ..., 0, are parameters of the model and ¢, is assumed to
be white noise.

* In the global application presented in Deliverable 5.2, all the points of the grid
were assumed to follow the same order of ARMA, independently of their spatial
location. This was already pointed out as a weakness of the approach presented
and could be the reason of a systematic overestimation of extremes seen in the
northern latitudes.

» When detecting the abnormal events, two approaches were considered: extreme
residual coexceedances and Mahalanobis distance. The use of coexceedances
relies on a very simplistic assumption for the multivariate case. Therefore we have
rejected this approach and followed with the use of the Mahalanobis distance.

We have tackled all those problems and implemented some improvements to the
algorithm which will be described in the following sections. We have also tested these
new implementations in the method on a new version of the Earth System Data Cube
at the BACI area of interest, obtaining very promising results.

This work has been presented at the European Geosciences Union (EGU) Gen-
eral Assembly last April 2017 in Vienna [4] and has been accepted for presentation at
the 3rd International Conference on Advances in Extreme Value Analysis and Appli-
cation to Natural Hazards (EVAN) recently hosted in September by the University of
Southampton, UK [5].

2.1 Improvements and Extensions to the Multivariate Novelty De-
tection with Autoregressive Models

In order to test the improvements and extensions developed, data from the Earth Sys-
tem Data Cube (ESCD) were used. From this database, 5 biosphere variables were
selected:

 Gross Primary Productivity (GPP)



Latent Energy (LE)

Net Ecosystem Exchange (NEE)
Sensible Heat (SH)

Terrestrial Ecosystem Respiration (TER)

These variables have a temporal coverage of 11 years, from January 2001 to De-
cember 2012 with 8-daily observations and a spatial grid of 0.25° covering the main
area selected for BACI, which comprises Europe and Africa (see Figure 3). This new
version of the ESDC used has a higher spatial resolution of 0.25°. In Deliverable 5.2
an older version with 1° spatial resolution was used.

At each point of the grid, and for all the variables separately, the mean seasonal
cycle was subtracted and the remaining variables were standarized (x = 0 and ¢ = 1).

2.1.1 Pre-treatment: Dataset Cleanup

Regionalization We have clustered the spatial grid into regions of similar climate
conditions. This regionalization was done according to the climate types defined by the
Képpen Climate Classification [3]. The Képpen Climate Classification is a widely used
vegetation-based empirical clustering that divides the world in up to 31 climate regions.
From these 31 climate regions, 23 of them are present in our area of application. In
Figure 3 the 23 climate regions present in our area of study with the legend explaining
the codes that define them are depicted.
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Figure 3: BACI area of study clustered according to the Képpen Climate Classification.



ARMA Model Selection For each climate region it has been selected a representa-
tive point. At this point it has been fitted a univariate ARMA model for each of the 5
variables. To select the best coefficients (p, ¢), a Bayesian Criteria [8] was applied to
all the possible combinations between (0,0) and (5,5). Table 1 shows the kind of model
selected for each region and variable. Note that there are some variables where the
ARMA model selected is (0,0), in those cases, the Bayesian Criteria tells us that is
better to work directly with the variables themselves instead of working with an ARMA.

Table 1: ARMA parameters, (p, q), selected for each climate region and variable.

Region Variables
GPP | LE |NEE | SH | TER
Af [0,0] | [0,0] | [0,0] | [0,0] | [0,0]
Am [1,0] | [0,0] | [1,0] | [0,0] | [1,0]
As [1,0] | [0,0] | [1,0] | [0,0] | [O,1]
Aw [1,0] | [2,2] | [1,0] | [0,0] | [1,0]
BWh | [1,1] | [1,1] | [1,1] | [1.,0] | [2,0]
Bwk | [1,1] | [1,1] | [1,1] | [1.,0] | [0,0]
BSh | [1,0] | [0,0] | [1,0] | [0,0] | [0,0]
BSk | [1,0] | [1,0] | [1,0] | [0,0] | [1,1]
Csa | [1,1] | [1,0] | [1,1] | [1,0] | [1,0]
Csb | [0,0] | [0,0] | [0,0] | [0,0] | [0,0]
Cwa | [1,1] | [1,1]1 | [1,1] | [1,0] | [1,1]
Cwb | [1,0] | [1,1]] [0,0] | [1,0] | [1,1]
Cwc | [1,1] | [1,1] | [1,1] | [1,1] | [1,1]
Cfa [0,0] | [3,2] | [0,0] | [0,0] | [0,0]
Cfb [4,2] | [1,0] | [1,1] | [1,1] | [1.0]
Cfc [0,3] | [1,0] | [4,0] | [1,0] | [1,0]
Dsa | [4,2] |[1,1] | [2,0] | [1,1] | [1.,1]
Dsb | [1,0] | [1,0] | [1,0] | [1,0] | [1,0]
Dsc | [0,0] | [0,0] | [0,0] | [O,1] | [0,0]
Dfa (1,11 [ [1,1] | [1,1] | (1,10 | [1.,1]
Dfb [1,0] | [1,0] | [1,0] | [0,0] | [1,0]
Dfc [1,0] | [0,1] | [1,0] | [1.,0] | [0,1]
ET [1,0] | [0,0] | [0,0] | [0,0] | [O,1]

Now we are ready to proceed with the entire spatial grid. For each point an ARMA
(pij, ;) is fitted for each variable, where i refers to the climate region the point belongs
to and j refers to the used variable.

2.1.2 Event Detection: from Novelty Scores to Direct Detections

In Deliverable 5.2, we proposed two main methods to detect the extreme events after
the residuals (difference between the original data and the ARMA models’ estimation)
are calculated: Extreme Residual Coexceedances and Mahalanobis distance. Back
then we already pointed out the limitations that the coexceedances method proposed,
therefore we have continued using the Mahalanobis distance as a metric that allow us
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to detect extreme events. For more detailed explanation about this metric and its ap-
plication to the residuals please refer to Deliverable 5.2.

Once we have the novelty scores, i.e. the Mahalanobis distance, estimated for all
the points of the grid, arises the following question: how could we discern between
normal and abnormal behavior of this metric? The first and easiest option is to fix a
threshold and look for the events surpassing this threshold, but then we would have
a secondary question: how do we fix that threshold? We have tried two options: on
a first approach we have used a fixed threshold at a certain percentile of the Maha-
lanobis distance distribution and as a second and more complex approach we have
also explored an automatic manner to define the abnormal events based on a Markov
Random Field model.

Fixed Threshold As said, the easiest way to distinguish between normal and abnor-
mal events is to set a threshold. To do so, we have set the threshold at the 97.5th
percentile of the Mahalanobis distance distribution (all the Mahalanobis distance val-
ues along the entire region). This is a common percentile chosen in extreme value
analysis. We have then looked for the events above this threshold, it means the high-
est 2.5% observations. Figure 4 shows the 20 largest events in size detected. The red
line shows the contour of the extreme event detected and the number in red measures
the intensity of the Mahalanobis distance within the contour line.

This approach does not consider any spatial cross-correlation, the points of the
spatial grid are treated independently. Additionally, no temporal dependencies have
been considered to define the events, these are just the 20 observations were the Ma-
halanobis distance presents the 20 largest events in size above the threshold defined.

This approach still needs to be improved to be able to detect events that extend
in time more than one timestep. That is the reason why within this 20 observations
plotted there are some timesteps very close in time (please note that the database
used provides data on an 8-daily basis). For example there are up to 4 observations
within this Top 20 that occurred during summer 2010; these observations surely belong
to the same event that expanded in time for some weeks during that summer: the
Russian Heat Wave of 2010.

Multi-temporal Spatio-contextual Markov Random Field Model So far, in all the
steps of the presented methodology, the time series of each location in the grid was
processed independently. However, the neighboring locations are most likely to have
spatially similar local statistics. Markov Random Field (MRF) spatio-contextual models
have the ability to quantify the spatial dependency among neighboring locations by a
mathematically well established methodology. These contextual dependencies can be
modeled by conditional probabilities within the neighborhood system [7]. Hence, to
tackle the spatio-temporal dependencies of biosphere data, the obtained Mahalanobis
distance over all BACI area is treated as an image time series. These images are then
classified into three classes namely, ‘'intense anomaly’, ’possible anomaly’ and ’nor-
mal’ using MRF model. We used an adaptation of the muti-layer fusion MRF model
proposed in [2] for the classification of the Mahalanobis distance images. The adapted
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Figure 4: Contour lines of the 20 largest events detected.

method consists of unsupervised Kmeans clustering followed by multi-temporal MRF
based segmentation applied recursively on each N > 1 consecutive images. The se-
lection of the value of N is based on the temporal resolution of the data. In our experi-
ments, we set N=3 ensuring that the data belongs to similar season.

Experimental results are shown in Figure 5. The spatial and temporal extents of
detected extreme events can be directly deduced from the classified images’ label
maps.

2.2 First Version of the BACIndex

From the methods detailed explained before we have provided two initial versions of
the BACIndex. These two products serve to other WPs to work on the validation and
socio-economic and biodiversity impacts.

The first product is the Mahalanobis distance of the ARMA residuals estimated for
every point at every timestep of the time series. This value is related to the possibility
of an abnormal event happening, in other words, this distance is already an index that
shows the anomalies in the biosphere.

The second product comes as a result of the first one. For each timestep the Ma-
halanobis distance has been clustered into 3 levels: 'normal’, ’possible anomaly’ and
‘intense anomaly’. This segmentation has been done by means of a Kmeans clustering
followed by a multi-temporal Markov Random Field.

Both products have been storaged in netCDF files and uploaded to the BACI data
exchange portal so it is easily accessible for other partners of the consortium.
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Figure 5: The classification of the images corresponding to the top 20 largest events
shown in Figure 4. The legend shows the mean of the 'possible anomaly’ and ’intense
anomaly’ clusters in orange and yellow colours respectively, the 'normal’ class is shown
in blue.

2.3 Conclusions

We have presented the advances implemented in the methodology proposed to detect
abnormal events in multivariate time series based on regressive models. A preliminary
version of this methodology was already presented in the Deliverable 5.2. Since then
we have improved it in several aspects:

 Aregionalization scheme was introduced. This regionalization consists on a clus-
terization of the spatial grid into regions of similar climate conditions. This cluster-
ization was done based on the Képpen Climate Classification. The implementa-
tion of this regionalization scheme has partially solved the issue of overestimation
of extreme events in the northern latitudes. Anyways, the heteroscedastic nature
of the time series in extreme northern latitudes is not an easy problem to solve,
we have also tried to remove the seasonality by removing the harmonics instead
of by removing the mean seasonal cycle to check if that would improve our re-
sults, but it did not work better.

» An automatic selection of the ARMA models based on a Bayesian Criteria was
implemented: this allow us to automatically select a different kind of ARMA model
(number of parameters to be fitted) for each variable and region.

» Two methods to go from novelty scores to direct detections have been analyzed
and compared. The first one considers an event to be abnormal when it sur-
passes a previously fixed threshold. The threshold has been set to be at the
97.5th percentile of the distribution. The second method is based on a combina-
tion of a clustering method (k-means) with a Markov Random Field model. The

13



main advantage of this second method is that it takes into account spatial correla-
tion between the points that conform the grid, while the fixed threshold approach
presented doesn’t.

+ A preliminary BACIndex has been already created and is accessible for the rest
of the partners of the consortium. Two different versions of this index have been
provided: the first one is the Mahalanobis distance estimated in each point of the
grid and each timestep and the second version is a segmentation of these Ma-
halanobis distances into three classes: 'normal’, ‘possible anomaly’ and ’intense
anomaly’ at each timestep.

There are still some open questions we need to work on. We will keep on working on
them to make our methodology more robust and with general applicability. Therefore,
our next duties comprise:

 Application of the methodology proposed to the satellite data that will be provided
by the WP2. We will try to apply the methodology as it is right now, but it might
be needed some adaptations to fit to the different data that will be provided by
the BACI partners. We have worked with some preliminary data already provided
by WP2, but due to some artifacts and biases in the data we have not been able
to apply our methods to this data. These issues have been accordingly reported
and discussed with WP2.

 Further research on the events detection to select which is the optimal method to
apply. The method presented so far is a good approach, but we would like to test
some adaptations or improvements to tailor them to our problem.

« Attribution scheme. This step is crucial to understand the processes causing
abnormal events. This will be our main focus for the next months: (Task 5.4 -
Attribution Scheme).
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3 Conclusions

This deliverable refers to the works done within the Task 5.3 - Incremental novelty de-
tection, automatic dataset cleanup and going from novelty scores to direct detections
within the Work Package 5 - Synthethic Index and Attribution Scheme: the BACIndex.

The work done along this task can be divided into two main parts:

We have been working on the development of the library to run our Maximally Diver-
gent Intervals algorithm for anomaly detection. This algorithm was already presented
in the Deliverable 5.1 and extended in the Deliverable 5.2. At this point, a main im-
provements was shown in this deliverable: the algorithm has been extended to be able
to deal with spatio-temporal data. Parallel to this, a software prototype with the algo-
rithm has been released. Together with software it has been also provided a graphical
user interface and a user guide. These tools ease the use of the algorithm and allow
for experimentation, threshold selection and interactive user feedback.

In parallel, our methodology to detect extreme events based on autoregressive
models has been improved and further developed. These improvements where mostly
focused on two main parts of the method:

* Pretreatment; dataset cleanup: i) we have worked on a regionalization scheme
where the spatial grid of data is clustered into subregions of similar climate condi-
tions and Ji) an automatic ARMA model selection has been implemented making
the entire methodology more flexible to the particular conditions that each vari-
able might present at each location.

» Event detection; from novelty scores to direct detections: two method that allow
the definition of detections from novelty scores have been analyzed and com-
pared. A simple one considering a fixed threshold and a more complex one that
combines a clustering method with a Markov Random Field model.

This developments lead to the creation of a first version of the BACIndex that has
been already distributed among the BACI consortium.

With this deliverable is ratified the achievement of Task 5.3.
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