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Summary 
This deliverable D2.2 provides the definition and specification of protocols for merging 
EO data and specification of ‘surface state vector’ (SSV): time, space, wavelength 
requirements, ancillary data, including projections and file formats. This deliverable 
forms the basis of a technical requirements specification for the production of the 
state vector. 
 
 
 
 
Aim/Outcome 
 

• Specification of ‘surface state vector’ (SSV) (D2.2) 
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1 Introduction 
This document is intended to fulfil the requirements for D2.2 i.e. to provide details of 
the technical requirements for the generation of the EO-derived SSV, via merging of 
EO data from various streams. The requirements for SSV specification include: time, 
space and wavelength requirements, ancillary data, projections, file formats. 
 

2 Definition of SSV framework, input, output, ancillary data 
The SSV, as defined in the BACI proposal, is the best estimate from EO, representing 
the state of a point/region on the land surface at a given time as a function of input 
data i.e. 𝑆𝑆𝑆 = 𝑓(𝜌,𝜎0(𝑥,𝑦, 𝑡, 𝜆, )⋯ ) , in particular reflectance 𝜌 , and 𝜕𝜕 𝜕𝜕⁄   i.e. 
change in reflectance since the last observation, backscatter 𝜎0, as well as other 
potential variables such as LST, vegetation state and ancillary information), with 
uncertainty. Two key aspects of the approach are that: i) SSV definition should be 
flexible enough to allow for inclusion of other EO data where useful; and ii) the 
framework should include assessment of uncertainty. The latter is important in terms 
of assessing the strength and certainty of change as indicated by the SSV, from the 
perspective of the observation uncertainties, as well as for incorporating the impact of 
this uncertainty into the subsequent BACI and downstream analysis. 
 

3 Data-merging framework: summary 
The main tool used for data merging for the BACI SSV is the Earth Observation Land 
Data Assimilation Scheme (EO-LDAS) (Lewis et al, 2012; EO-LDAS, 2013). The code 
for EO-LDAS is open and available from EO-LDAS (2013). 
 
The EO-LDAS is an optimal estimation data assimilation (DA) framework developed 
expressly for merging data from different sources with different sampling properties 
(spectral and temporal particularly). The EO-LDAS is a Bayesian estimator (Enting, 
2002), based on the scheme of Tarantola (2015). All observations (including any prior 
information on the state variables) is represented by a prior probability density 
function (PDF), which when combined yields a posteriori PDF for the parameters, 
which is the result/solution of the assimilation problem. Assuming PDFs are Gaussian 
and the models can be considered linear (or nearly, e.g. via transformation) then the 
posterior parameter PDF can also be approximated as:  
 

𝜌(𝜒) = 𝑒𝑒𝑒�−𝐽(𝜒)�                (1) 
 
which is the maximum likelihood estimate of the state variables 𝜒 . This is the 
minimum of a cost function which takes the form:  
 

𝐽(𝜒) = ∑ 𝐽𝑖(𝜒)𝑖  (1)          (2) 
 
where 𝐽𝑖(𝜒)is a cost function expressing a constraint i, a member of some set of 
constraints.  

EO-LDAS has two main components: (i) a set of constraints, expressed via Eq. (1); 
(ii) an assimilation algorithm, i.e. a way to apply the constraints to achieve the optimal 
estimate of the state vector. The set of constraints in EO-LDAS involves: (i) an 
observational constraint 𝐽𝑜𝑜𝑜(𝜒), requiring data (from EO or ground measurements) 
and a model for translating from state space to observation space (the observation 

https://github.com/jgomezdans/eoldas_ng
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operator); (ii) a dynamic model constraint 𝐽𝑚𝑚𝑚𝑚𝑚(𝜒), conditioning the temporal (and/or 
spatial) evolution of the state vector; (iii) physical or empirical bounds and/or 
distribution constraints 𝐽𝑝𝑝𝑝𝑝𝑝(𝜒) to the state vector elements. Thus, the core of EO-
LDAS becomes:  

𝐽(𝜒) = 𝐽𝑜𝑜𝑜(𝜒)+𝐽𝑝𝑝𝑝𝑝𝑝(𝜒) + 𝐽𝑚𝑚𝑚𝑚𝑚(𝜒)      (3) 
 
Each of these constraints has associated with it an error model represented by a 
covariance matrix. Note that the symbol  𝜒 refers to the set of state variables that we 
wish to estimate. In EO-LDAS this essentially means a representation of the state at 
each sample point in time (and/or space) that we consider. So, e.g. estimating Leaf 
Area Index and leaf Chlorophyll content at one location for every day of the year, 
would involve a state vector with 365×2 elements. EO-LDAS can also include ‘static’ 
state representations affecting one or more of the constraints considered constant in 
space/time. 
 

3.1 Input, outputs, ancillary data 
Following initial testing of the SSV approach using EO-LDAS, for the BACI SSV we 
limit the approach from the 1D vegetation RT model inversion case, to the 
generation of temporally regularized surface reflectance and backscatter 
products. The vegetation EO-LDAS application allows for retrieval of surface 
biophysical properties, based on optimal estimate of biophysical radiative transfer 
(RT) model parameters. However, following feedback and discussions from other 
WPs, we note the following: 
 

• The surface state and change, 𝑆𝑆𝑆 = 𝑓(𝜌,𝜎0(𝑥,𝑦, 𝑡, 𝜆, )⋯ ) and ∆𝑆𝑆𝑆 are most 
directly captured by the observations going into the 𝑆𝑆𝑆 themselves; 

• Derived products including estimates of LAI, fAPAR and other surface 
biophysical properties can be desirable from the perspective of attribution of 
changes in 𝑆𝑆𝑆. However any RT model required to derive these estimates will 
impose additional constraints and assumptions on the original data, potentially 
masking or exaggerating changes in the 𝑆𝑆𝑆; 

• The change analysis to be carried out on the SSV by the ML group in WP5 
(and others), will likely be most sensitive to change in an 𝑆𝑆𝑉 free of additional 
model assumptions: if a change is real, it should be visible in the observations 
themselves. 

 
As a result of this, the BACI SSV is proposed to be generated from the best-estimate 
of observations i.e. temporally regularized, multi-wavelength time series of 
observations, in general avoiding biophysical RT model derivations of surface 
parameters. However, we note that in producing this regularized time series SSV, it is 
also straightforward to produce estimates of surface biophysical properties, should 
they be desirable, and taking into account the caveats provided above.  
 
For generating the best-estimate of surface state from optical data, we implement the 
inversion of linearised bidirectional reflectance distribution function (BRDF) Kernel 
Models by temporal regularization. In general this implementation can be described 
by the EO-LDAS framework represented by eq. 3. These models assume BRF as 
linear combination of kernels which are functions of view and sun angles i.e. 𝜌̅ =
𝑓(𝑓𝑖𝑖𝑖 ,𝑓𝑣𝑣𝑣 ,𝑓𝑔𝑔𝑔) where the 𝑓𝑖𝑖𝑖 , 𝑓𝑣𝑣𝑣  and 𝑓𝑔𝑔𝑔  are isotropic, volumetric and geometric 
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kernels representing the respective scattering ‘shapes’ from the surface (Schaaf et al. 
2002). The linear BRDF model approach is important as it allows us to normalise 
viewing and illumination geometry i.e. placing all observations in a common view, sun 
angle configuration. This removes any view and sun-angle dependencies from the 
data, which can provide significant changes over time, and can be mistaken for 
changes in the surface state. The recent analysis by Morton et al. (2014) for example 
suggests that the Amazon ‘greening’ controversy may have been due to residual sun-
angle effects in composited data. 
 
The view and sun angle normalized BRDF, is then used, along with the microwave 
time series, as input for temporal regularization. This provides an optimal time series 
interpolation, based on the preceding and following observations in the time series, 
and using the EO-LDAS framework as the temporal smoother. Temporal 
regularization works not as a post processing filter but as a constraint which reduces 
the number of possible solutions of an inversion (Lauvernet et al. 2008; Knorr et al. 
2010; Quaife and Lewis 2010; Lewis et al. 2012). This is a key technique in the 
always “ill-posed” problem of inferring parameters from EO. In a perfect or noise-free 
case, we can use a model which describes the temporal development of a desired 
parameter (LAI, BRDF kernel etc.). However in a real situation this kind of a model is 
usually not available. Here, we use a simple ‘zero order’ process model that assumes 
“today is the same as tomorrow” i.e. that the temporal development of the parameter 
of interest is smooth. 
 
Temporal regularization provides optimal interpolation i.e. the best estimate of a 
continuous surface state observation (in an optimal estimation sense). However 
temporal regularization requires an estimate of γ, the model error or ‘smoothness’ 
parameter, describing the degree to which the regularization process should rely on 
fitting to previous observations, or the current observation. If is too large, then the 
time series can be over-smoothed causing smaller magnitude or shorter duration 
changes to be down-weighted. 
 
Inversion of BRDF models and temporal regularization allows us to obtain a full time 
series of reflectance, broad band (BB) albedo and the associated posterior 
uncertainties.  Temporal regularization of surface reflectance is an important 
technique to fill time gaps, normalize BRDF variations i.e. to account for different 
spectral/angular sampling from different sensors. 
 
The SSV generation as designed is flexible and able to incorporate observations from 
other sources. However the overhead for this is not the inclusion and combination of 
the data per se, but the downloading and pre-processing of the data (consistent 
spatial resolution). By processing on the CEMS system we have minimized this 
overhead in that these data are archived on the system and so we minimize the 
movement of large amounts of data.  
 

3.2 Input, outputs 

3.2.1 Inputs 
• NASA MODIS, across the time-period 2000 – present: global coverage, 7 

spectral bands, 1km spatial resolution, ISIN projection;  
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• NASA MISR, across the time-period 2000 – present: intermittent spatial 
coverage, 4 spectral bands, 275m spatial resolution, SOM projection. Only 
considered for regional test cases due to spatial coverage; 

• NASA Landsat, 2000 – present (and historical, but using 2000+ for BACI):  
intermittent spatial coverage, 7 vis-SWIR bands, 30m spatial resolution, UTM 
projection. Considered for local test cases, due to inconsistent spatial 
coverage; 

• ESA Sentinel-1 microwave backscatter, 2014-present: processed to calibrated 
backscatter,  

 
To come, if applicable 

• Sentinel 1B (2015-): to be processed as for existing S1A data; 
• Sentinel 2A (mid-2015- and B 2017): to be considered in the same way as for 

Landsat i.e. for local test cases where spatial coverage is likely to prove a 
significant advantage; 

• Sentinel 3A (early 2016): to be processed in a similar way as for MODIS i.e. for 
regional to global cases, particularly where temporal coverage is likely to prove 
an advantage; 

• MODIS LST, 2000-present: applying the temporal regularization framework to 
provide a gap-filled time series of observations; 
 

Clearly the Sentinel observations will not provide the time series coverage required to 
identify anything other than much shorter term anomalies. However in conjunction 
with the existing SSV, this may be sufficient to demonstrate the additional utility of 
higher spatial resolution and increased temporal coverage provided by both Sentinel 
2 (regional) and 3 (global). The design of the SSV is intended to allow these data 
streams to be incorporated, albeit with the overhead of collecting and archiving the 
data, which can be the largest single time constraint given the volumes of data 
required, as described above. To try and mitigate the lack of historical SAR time 
series, we are now including recently-released ESA ASAR data. 
 
Historical microwave data 
In the second half of 2016, the European Space Agency opened the archive of 
historical microwave data to the public, which allows the registered users to download 
ENVISAT ASAR C-Band data free of charge.  
 
The data download is done via EOLi (Earth Observation Link), which is an open 
source application provided by the ESA (https://earth.esa.int/web/guest/eoli). This 
earth observation catalogue and ordering service allow the registered user to search, 
browse and download ESA earth observation data as well as satellite data from third 
party missions (e.g. ALOS). Regular registered users have a download query 
restriction by 5 satellite scenes per day. It is possible to enlarge the number of 
downloads up to 30 scenes per day by writing a project proposal (data service 
request), which have been done for the BACI project.  
 
The processing of the ENVISAT SAR data was done utilizing the SNAP Toolbox 
(Sentinel Application Platform), which is an open source software, which were 
developed for pre-processing, visualisation and analysing different sources of earth 
observation data, e.g. from the Sentinel mission, ENVISAT data as well as third party 
missions ALOS 1 and ALOS 2. 
 

https://earth.esa.int/web/guest/eoli
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The processing of the ENVISAT ASAR data* (Image Mode Precision Image) used 
within BACI is done using the following consecutive processing steps: (1) import and 
multi-looking, (2) retrieving the parameters from the orbit file, (3) radiometric 
calibration, (4) Terrain-correction and terrain-flattening, and (5) output. 
 
*Data provided by the European Space Agency (© ESA (2016). 
 

3.2.2 Outputs 
 
SSV, comprising: 

• Temporally regularized (optimally smoothed and gap-filled) estimates of 
surface state comprising reflectance and backscatter time series; 

• Uncertainty estimate of resulting regularized surface state; 
• Covering the time period:  

o 2000-present for MODIS as base input, with Landsat and MISR for local 
areas/periods; 

o 2014- for Sentinel 1A for BACI FT sites; 
o 2000- for ENVISAT ASAR back to for selected FT sites; 

 
 

File format(s), as defined in MS2: 
• netCDF: all SSV data will be provided as netCDF as agreed with consortium, 

can be used for point and spatial data, widely-used, handled by most/all main 
software tools (particularly Python/GDAL); 

 
Ancillary data required for, and/or metadata resulting from, SSV generation: 

• Observation type: name and type of observation (‘raw’, low-level, processed 
or derived (eg LST); 

• Calibration and units: SI in the case of lower-level observations; categorical 
in the case of eg land cover, in which case class definitions will be provided; 

• Origin of observation: source, citation, contact person/URL/institution;  
• Date, time, location/area: i.e. lat, lon range and projection if not UTM)  
• Projection: UTM (zones); 
• Terrain correction (for SAR products): specify whether terrain correction has 

been applied; 
• Climate, land cover, trait information: The MODIS land cover map will be 

used if LC is to be used to stratify analysis; non-EO fields such as climate, 
traits etc fields can be incorporated at the machine learning stage, if they are 
also in the same spatial resolution (1km) and projection (UTM), netCDF. 

 
Naming conventions:  

• Unique to sensor, product, site, date (where version could be within product, 
and/or defined by a BACI consortium member based on their own processing).  

 
For some datasets (e.g. MODIS particularly) it will be assumed, unless specified 
otherwise, that ALL datasets compiled under a given SENSOR_PRODUCT_SITE are 
processed in the same way and therefore have the same metadata properties. If so, 
then a single metadata file will be used; if not this will be reflected in the naming 
convention e.g. by version, so that a user can track which product has been 
processed in what way and by whom. 
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4 Results 

4.1 Temporally regularized MODIS data 
The following figures show example time series of normalized MODIS during 2000-
2015 with uncertainties, for different areas. This is the core of the SSV i.e. temporally 
regularized, gap-filled estimate of surface state, with associated uncertainty. While 
focus is on the BACI FT sites, other sites have been selected for test SSV generation 
where there are sufficient ground data (including field observations of potential 
surface state changes) that the resulting SSV can be validated as far as possible.  
 
 
These SSV values will be used as input to the BACI machine learning (ML) approach, 
which aims to identify change ‘hotspots’ from EO and ancillary data (climate, traits, 
function etc). 
 

 
Figure 1 MODIS reflectance band 2 (NIR), for the Hainich test site (Germany, lat/lon: 51.08, 19.45), 
characterised as a deciduous broad-leaf forest site, for the period 2001-2015. Grey area is uncertainty in 
+/- 1 σ. 1225 MODIS tiles. 

The dark blue symbols are the original MODIS reflectance filtered by standard 
MODIS quality assurance (QA) flags i.e. cloud level and sensor response. The red 
line is normalized reflectance. The green line is the EO-LDAS derived fit to 
observations i.e. reflectance calculated by forward model assuming the same 
geometry as original data. 
 
At the deciduous broad-leaf site, the seasonal variation is obvious, along with 
considerable other variation, even in the regularized case. This demonstrates a major 
advantage of the regularized approach over, say a RT-based model retrieval – where 
the RT model has to retrieve e.g. LAI on the basis of noisy observations, the resulting 
LAI can increase and decrese significantly from day-to-day (see Disney et al., 2016 
for an example of this problem). This poses problems for models either driven by, or 
compared with the LAI values, as well as for change detection, which will be masked 
by the large day-to-day variation. This can arise due to the input data, the model 
assumptions and also ancillary data used for the RT model retrieval.  
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Figure 2 MODIS reflectance band 2 (NIR), for the Somalia test site (Horn of Africa, part of BACI FT, lat/lon: 
47.00, 6.00), characterised as desert/savannah, for the period 2001-2015. 3413 MODIS tiles. 

In this case we see there is almost no discernible seasonal phenology, and a series 
of rapid intra-annual fluctuations, along with some slightly more significant increases 
and reductions. These latter might make ideal cases for candidate rapid 
changes/disturbance. What is most obvious here is the impact of BRDF on magnitude, 
which has acted to cause the normalized reflectance to be substantially higher than 
the observed reflectance. In a relatively stable target area such as this, this will not 
have  a large impact on a change detection strategy. However, for subtle changes 
against a background of perhaps greater seasonal and/or interannual variation, this 
magnitude variation can be important.  
 
 

 
Figure 3 MODIS reflectance band 2 (NIR), for the Viterbo test site, Italy (BACI FT, lat/lon: 42.38, 12.03), 
characterised as agricultural test site, for the period 2001-2015. 3678 MODIS tiles. 

In the Viterbo case, the strong seasonal cycle is again visible, stronger even than for 
the deciduous woodland site at Hainisch. The difference caused by the normalization 
is more apparent here. 
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Figure 4 MODIS reflectance band 2 (NIR), for the Wytham Woods test site, UK (lat/lon: (-1.34, 51.78), 
characterised as deciduous broadleaf forest, for the period 2001-2015. 281 MODIS tiles. 

For the Wytham Woods case, the seasonal cycle is visible, but much weaker than the 
Viterbo and Hainisch sites, despite the deciduous nature of the majority of the 
woodland. This may in part be due to the varying canopy type (some coniferous, 
varying understory) and also due to the more temporally sparse nature of the 
observations. Figures 2 and 4 show that the normalized reflectance has higher values 
than input data. This is due to difference in view/sun geometry especially during 
wintertime. We can see it observing that fit-to-observation (green curve) is very close 
to the input reflectance values. This example demonstrates importance of reflectance 
normalization. 
 

4.2 Temporally regularized Sentinel data 
The examples below show Sentinel-1 data from BACI CEMS archive (where there 
also ALOS Palsar potentially for some sites). The Sentinel-1 data are aggregated to 
the MODIS 500m resolution. 
 
The figures below show essentially a single year of Sentinel 1 data over the test sites, 
and as a result we cannot draw any conclusions about seasonal cycles etc. The 
regular nature of the observations is apparent however. This will not be the case for 
optical due to clouds, and this is a key reason for including microwave observations in 
the SSV. A second key reason is that of course the microwave signal is sensitive to 
different surface properties than optical observations – surface roughness and 
moisture primarily. Where we have multiple optical data observations, they will likely 
be strongly correlated in terms of information content, even if they have different 
spectral bands. This is because the bands almost always cover the same general 
regions (visible, NIR, SWIR), even if at different specific band locations. Optical 
observations are often strongly correlated in time as well: clouds, and sun-
synchronous orbits tend to mean that when observations are obscured from one 
platform/sensor, they are often obscured from others. Higher revisit frequency can 
reduce this issue, but rarely remove it. 
 
Part of the reason for the high uncertainty values of Sentinel-1 time series is due to 
aggregation to MODIS resolution. Because of nature of microwave data (coherent 
interference), the backscatter signal has a broad range of possible values. When 
spatially aggregated to lower resolution this tends to substantially increase 
uncertainty. This is the reason why it is so important to use a method which takes 
uncertainties into account. We can see in Figures 5-7 that uncertainties are higher in 
between acquisitions i.e. we restored intervals between satellite acquisitions but we 
trust these intervals less. 
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Figure 5 Sentinel-1 VH backscatter (linear) for the Viterbo test site, Italy (BACI FT), characterised as 

agricultural test site, for the period 10/2014 to 10/2015. Shades of grey are 5%, 25% and 75% credible 
interval of uncertainties. 

 
Figure 6 Sentinel-1 VV backscatter (linear) for the Viterbo test site, Italy (BACI FT), characterised as 

agricultural test site, for the period 10/2014 to 10/2015. Shades of grey are 5%, 25% and 75% credible 
interval of uncertainties. 

 

 
Figure 7 Sentinel-1 VH backscatter (linear) for the Wytham Woods test site, UK (BACI FT), characterised 
as deciduous broadleaf, for the period 10/2014 to 10/2015. Shades of grey are 1%, 5% and 25% credible 

interval of uncertainties. 

We note that the treatment of optical and microwave data in a common regularization 
framework in the manner shown above is one aspect of what makes the BACI SSV 
unique and novel.  
 

4.3 Temporally regularized estimates of biophysical properties  
 
The following figure shows results of the full EO-LDAS inversion of a canopy 1D RT 
model, resulting in time series of: LAI, leaf chlorophyll content, leaf water content and 
soil brightness, with associated uncertainties. These results were obtained with the 
NADIM 1D semidiscrete canopy RT model (Gobron et al., 1997), using dynamic prior 
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information and temporal regularization. The dynamic prior information constraints in 
this case are the beginning and end of vegetation season where we know that LAI, 
chlorophyll and leaf water have very small values. Temporal regularization imposes 
requirement of smoothness. 
 
As discussed above, while these type of parameter retrievals are potentially of 
interest in terms of attribution (e.g. whether any observed change is due to vegetation 
or background changes), the imposition of the RT model assumptions (canopy 
structural, leaf optical properties here) may mask more subtle changes in the 
underlying SSV signal used to derive the parameters. This is why we propose that 
using the ‘unadulterated’ SSV is likely to be better from a change detection 
perspective.  
 
In each of the examples below, the shaded regions represent  75% and 95% of 
credible interval of uncertainty in retrieval. Vertical grey lines show MODIS 
acquisitions, which were used for the retrieval. The variable, often sparse nature of 
these observations due to cloud, highlight the desirability of combining observations 
from multiple streams, particularly microwave where possible: even optical data from 
multiple sources rarely provide much better temporal sampling due to the high 
temporal correlation between them. 
 

 
Figure 8 SSV-derived surface biophysical properties, and uncertainties for the Hainich test site 2000-2008. 
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Figure 9 SSV-derived LAI and uncertainties for the Wytham Woods test site 2001. 

 
We see in the figures above, that the uncertainty is apparently much lower than for 
the original SSV. Whilst this is true in the sense of the parameter uncertainty, of 
course this is not true necessarily in the sense of a time-series of surface state. This 
is in part due to the strong constraints used in the parameter retrieval of start and end 
of growing season. 

 


5 Summary 
The above description details the production of the BACI surface state vector (SSV), 
using temporal regularization within the EO-LDAS framework, to combine 
observations of the surface state from optical and microwave observations (D2.2). 
The resulting SSV output is an optimal estimate of temporally regularized, spatial time 
series of the surface, providing a unique and novel time-series vector of observations 
for input to the BACI ML for change detection and downstream product generation. 
 
In conclusion, the BACI SSV framework: 

• combines data across wavelengths, including optical and microwave (with 
different spatial and temporal properties), into a common observation vector;  

• uses these data to generate: optimally smoothed and filtered time series of 
reflectance, albedo and backscatter, as the core SSV output, with consistent 
uncertainties (key for use in further quantitative modelling and change 
detection chain, particularly attribution);  

• allows for retrieval of biophysical parameters based on RT model inversion, 
with quantified uncertainties;  

• is flexible, to allow extension to other time-series observations, notably new 
Sentinel observations (1-3), but also including potentially thermal (e.g. MODIS 
LST) and historical microwave (ENVISAT ASAR, where available).  

 
The treatment of optical and microwave data in a common regularization framework 
in the manner demonstrated makes the BACI SSV unique and novel.  
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